Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NanoImpact ; 34: 100507, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663500

RESUMEN

Polystyrene microplastics, extensively considered endocrine disrupting chemicals, disturb the reproductive system of living organisms. Polycystic ovary syndrome (PCOS), the reproductive endocrinopathy, is longstanding concern due to its eternal impacts as reproductive disorder and infertility. Despite several reports in reproductive and endocrine toxicity, there is inadequate literature regarding the daily intake of polystyrene-microplastics via drinking water in causing PCOS and leading to ovarian fibrosis in long-term. The present study investigated whether daily consumption of polystyrene-microplastics at doses equivalent to human exposure can cause PCOS and progress to ovarian fibrosis, using female zebrafish as model. Resembling letrozole-PCOS zebrafish model, daily intake of polystyrene-microplastics displayed hallmark PCOS pathophysiology; like excess body weight and %Gonadosomatic index, decreased Follicle Stimulating Hormone and ß-estradiol, increased Luteinising Hormone, brain and ovarian Testosterone (39.3% and 75% respectively). Correspondingly, ovarian histology revealed more developing (stage I and II) oocytes and less mature oocytes alongwith cystic lesions; like follicular membrane disorganization, zona pellucida invagination, theca hypertrophy, basophilic granular accumulation and oocyte buddings. Lipid deposition in intestinal and ovarian tissues was evidenced and increased fasting blood glucose manifesting insulin resistance. The expression of PCOS biomarkers (tox3, dennd1a, fem1a) was significantly disturbed. Polystyrene microplastics played vital role in inducing PCOS further enhancing oxidative stress, which positively influences inflammation and aggravate ovarian mitophagy, shedding light on its ability to harshen PCOS into ovarian fibrosis, which is characterized by collagen deposition and upregulation of pro-fibrogenic biomarker genes. These findings illustrate the potential of daily microplastics intake via drinking water in triggering PCOS and its progression to ovarian fibrosis.

2.
Sci Total Environ ; 830: 154796, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341844

RESUMEN

Many studies have investigated the negative impacts of microplastics on teleost fishes with very little or no evidence of their mechanism of action. This scenario entreats us to investigate the toxicities of nanopolystyrene in zebrafish oocyte with emphasis on the mechanism of action. In the present study, the cellular levels of mRNA transcripts of different genetic markers (such as: sod, gpx, nrf2, inos, ucp2, and atp6 (redox-sensitive markers); nfkß, tnfα, il-10, ikß, gdf9, and bmp15 (immune markers); gadd45, rad51, p53 and bcl2 (DNA damage and apoptotic)) have been quantified by real-time PCR after 6 h of incubation of isolated oocyte with different doses of nanopolystyrene viz. P0 (control i.e. no polystyrene in culture medium), P1 (100 ng/ml), and P2 (400 ng/ml). Results showed that both the treatment concentrations of nanopolystyrene induce oxidative stress with % DPPH = 30.75, 31.61, and 32.43% for P0, P1, and P2, respectively. Increase in oxidative stress in oocytes with increasing doses of nanopolystyrene was also observed in TBARS assay with MDA content 0.12 and 0.21 µM for P1 and P2, respectively as compaired to the control 0.08 µM. This increased oxidative stress can regulate the expression pattern (upregulation/downregulation) of selected genes leading to different toxic effects like - oxidative stress, immunotoxicity, and apoptosis in oocytes, which suggests the impairment of reproductive functions by nanopolystyrene.


Asunto(s)
Plásticos , Pez Cebra , Animales , Microplásticos , Oocitos/metabolismo , Estrés Oxidativo , Plásticos/metabolismo , Pez Cebra/metabolismo
3.
Environ Sci Pollut Res Int ; 28(43): 60291-60307, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34528197

RESUMEN

Interactions of plastic particles with different organic/inorganic pollutants including heavy metals impact their ecotoxicological potential, and proper understanding in this regard is important for their ecological risk assessment. However, many studies have reported the interactions between micro-/nanoplastics (MNPs) and heavy metals (HMs), but the most prevalent interactive forces and factors monitoring their interactions are still not clear. So, the present review represents the mechanisms of interactions with special emphasis on major interactive forces and biophysicochemical and environmental factors influencing trace element's adsorption onto the surface of MNPs. Electrostatic interaction and pore-filling mechanism can best explain the HMs adsorption to MNPs. A number of biophysicochemical factors (such as biofilm, size, crystallinity, and surface charge) and environmental factors (such as pH, salt, and temperature) act together for mediating interactions and ecotoxicities of MNPs and HMs in the real environment. From a toxicological point of view, the synergistic mode of action may be more active in animals, whereas the antagonistic activity may be prevalent in plants. Besides polymer density, biofilm formation and agglomeration property of MNPs can control the vertical distribution of MNPs along the water column. Finally, the ecotoxicological potential of MNPs in the natural environment can be considered as a function of spatiotemporal variation in abiotic (including MNPs and heavy metals) and biotic components. This review will be helpful in the detail understanding of ecotoxicological risk assessment of MNPs in relation to their interaction with heavy metals.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Animales , Metales Pesados/toxicidad , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
4.
Aquat Toxicol ; 240: 105971, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560410

RESUMEN

The phenomenon of eutrophication leads to the global occurrence of algal blooms. Cyanotoxins as produced by many cyanobacterial species can lead to detrimental effects to the biome due to their stability and potential biomagnification along food webs. Therefore, understanding of the potential risks these toxins pose to the most susceptible organisms is an important prerequisite for ecological risks assessment of cyanobacteria blooms. Fishes are an important component of aquatic ecosystems that are prone to direct exposure to cyanotoxins. However, relatively few investigations have focused on measuring the toxic potentials of cyanotoxins in teleost fishes. This review comprehensively describes the major toxicological impacts (such as hepatotoxicity, neurotoxicity, immune toxicity, reproductive toxicity and cytogenotoxicity) of commonly occurring cyanotoxins in teleost fishes. The present work encompasses recent research progresses with special emphasis on the basic molecular mechanisms by which different cyanotoxins impose their toxicities in teleost fishes. The major research areas, which need to be focused on in future scientific investigations, have also been highlighted. Protein kinase inhibition, transcriptional dysregulation, disruption of redox homeostasis and the induction of apoptotic pathways appear to be the key drivers of the toxicological effects of cyanotoxins in fish. Analyses also showed that the impacts of cyanotoxins on specific reproductive processes are relatively less described in teleosts in comparison to mammalian systems. In fact, as compared to other toxicological effects of cyanotoxins, their reproductive toxicity (such as impacts on oocyte development, maturation and their hormonal regulation) is poorly understood in fish, and thus requires further studies. Furthermore, additonal studies characterizing the molecular mechanisms responsible for the cellular uptake of cyanotoxins need to be investigated.


Asunto(s)
Cianobacterias , Contaminantes Químicos del Agua , Animales , Ecosistema , Eutrofización , Peces , Microcistinas/toxicidad , Contaminantes Químicos del Agua/toxicidad
5.
Biotechnol Prog ; 37(2): e3114, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345468

RESUMEN

Conventional chemical approaches for synthesizing nanoparticles (NPs) may restrict their applicability as they are not eco-friendly, energetically efficient and often involve toxic reducing/capping agents; but phytonanotechnology enabled the synthesis of safe, inexpensive, highly biocompatible NPs. In this regard, thorough understanding of green components and the modulatory effects of different reaction conditions on the physicochemical parameters of green synthesized NPs would be a prerequisite, which is not depicted elsewhere. This review critically analyzes the relevant reaction conditions from their mechanistic viewpoints in plant-based synthesis of NPs arising fundamental issues which need to be determined carefully. The size, stability and surface chemistry of phytogenic NPs may be fabricated as a function of multiple interconnected reaction parameters and the plant species used. The therapeutic potential of phytogenic NPs may depend on the plant species used; and so the meticulous understanding of physicochemical parameters and the family wise shorting of elite plant species may potentially benefit the theranostic future of plant-based NPs.


Asunto(s)
Tecnología Química Verde/métodos , Nanopartículas/química , Nanotecnología/métodos , Fitoquímicos/química , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...